Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Sci Total Environ ; 912: 169197, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38101647

RESUMEN

Land use change, anthropogenic exploitation and climate change have impacted the flow of services in the Himalayan region. The dominant land uses in the region including natural forest, degraded forest, rubber (Hevea brasiliensis) plantations, Areca catechu plantations, Areca agroforestry and Piper agroforestry were considered for the study. A progressive shift in land use was defined as the conversion and restoration of a less productive system like degraded land to plantations or agroforestry systems. A land use shift was considered retrogressive when it entails the establishment of plantations after clearing natural forests or anthropogenic disturbance of natural forests resulting in forest degradation. The objectives of the current study were to estimate changes in soil properties, stand structure, tree biomass, fine root production and carbon storage following a progressive and retrogressive shift in land usage. The aboveground biomass (105.9 Mg ha-1) was highest in the natural forest, followed by Areca agroforestry (100.2 Mg ha-1) and least in the degraded forest (55.3 Mg ha-1). The aboveground biomass carbon (47.1 Mg ha-1) of Areca agroforestry was comparable with that of natural forest (51.3 Mg ha-1). The highest proportion of passive carbon concentrations was observed under Areca agroforestry, whereas the lowest (4.13 g kg-1) was found under Areca plantations in the 0-25 cm soil depth. With the progressive shift in land use from degraded forest to agroforestry, SOC stocks increased by 27.6 % and 3 % under Piper and Areca agroforests, respectively. SOC stocks decreased by 8.5 % with a shift in land use from natural forests to Areca plantations. The production of fine roots was maximum in the Areca agroforest (13.2 Mg ha-1) and lowest under rubber plantations (4.2 Mg ha-1). The results show that progressive shifts from degraded forest to agroforestry can considerably increase carbon stocks, plant species diversity and multifunctionality than shifts to monoculture plantations thereby supporting improved biodiversity and mitigation of climate change.


Asunto(s)
Agricultura , Ecosistema , Goma , Bosques , Suelo/química , Carbono/química , Verduras
2.
Sci Total Environ ; 703: 135498, 2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-31759724

RESUMEN

Rehabilitation of the degraded soil is imperative to minimize the effects of soil degradation. It is in this context that stable soil aggregates, essential to providing physical protection to the organic residues, are important indicators of soil restoration or degradation. Thus, the present study was aimed at determining the soil aggregate stability and associated carbon fractions under rubber (Hevea brasiliensis) plantations. The study was conducted on 10, 15, 25, and 34-year-old rubber plantation established on Imperata grassland. Soil samples were collected from 0 to 10, 10-20, 20-50, 50-100 cm depths from different aged rubber plantation and native forest (NF) using a soil core of 5.6 cm inner diameter. Soil aggregates from each depth were separated by the wet-sieving technique, and grouped into three fraction size classes: macro-aggregates (>2 mm), meso-aggregates (0.25-2 mm), and micro-aggregates (<0.25 mm), and analyzed for carbon concentrations. The results showed that macro-aggregates dominated soil under different plantation ages and decreased with an increase in soil depth. The Mean Weight Diameter (MWD) and the Geometric Mean Diameter (GMD) increased with an increase in the age of the plantation and decreased with increase in soil depth. The MWD was the highest in the forest soil (5.8 mm) and the lowest (3.0 mm) under 10-year-old rubber plantation. The highest GMD was found under 34-year-old rubber plantation (2.1 mm) and the lowest under 10-year (1.4 mm) plantation. The SOC concentration under the recalcitrant pool increased with the increase in plantation age, and the highest amount was observed under 34-year old plantation. The increase in aggregate stability, recalcitrant carbon pool, and SOC stock with age chronosequence suggests the ecological role of mature rubber plantations in soil rehabilitation by minimizing the process of soil degradation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...